INVENTION
EDUCATION

October 27, 2020
DISCLAIMER
Any content or opinions expressed in this webinar are not that of the U.S. Department of Education nor an endorsement of any persons, products, programs, or policies mentioned herein.
Laura A. Peter
Under Secretary of Commerce for Intellectual Property and Deputy Director of the United States Patent and Trademark Office
Dr. Radia Perlman
Fellow, Dell Technologies, National Inventors Hall of Fame Inductee
Thoughts on Teaching Innovation

Radia Perlman
Radia.Perlman@dell.com
Why Teaching Innovation is Important

• I’m including in “innovation”
 • Creative thinking
 • STEM
 • Critical thinking

• Why STEM?
 • It is important to society...shortage of skilled workers and teachers
 • STEM is a great career
 • A healthy team needs people who think in different ways...so people who wouldn’t thinking of themselves as natural “STEM people” are needed

• Why critical thinking?
 • People need to understand that not everything they hear or read is true
 • That most problems do not have a simple “right/wrong” answer...there are always tradeoffs
Making Decisions

• My career has been a sequence of totally random events

• My advice to people struggling with a decision
 • You’ll never have enough information to make a totally informed decision
 • There are two types of people
 • Those that would be happy with either decision
 • Those that would be unhappy with either decision
Bad Habits that can be taught

• “Your work must be your own”
 • Learning from others, asking for help...“bad”

• There is a simple “right answer”... teaching facts, true/false, multiple choice – I will tell you the facts, you parrot them back

• You’re always being judged...the goal is to get graded...don’t make mistakes

• When I say “can be taught” I don’t mean “should be taught”
An Observation

• I have a terrible memory
• Others could remember what the teacher wanted, and repeat it on tests – I had to be able to derive things from basic principles
• I wasted so much of my childhood memorizing history facts (that I quickly forgot 10 minutes after the test)
• And was frustrated by subjective grading, (even though I loved literature and creative writing)
• So I wound up in STEM
Stereotype of an Engineer

• Always taking thing apart
• I never did that
• But I loved logic problems, and getting to the conceptual heart of problems and solutions
• I actually hate computers
 • The world would be better if more people in the industry hated computers
• An important type of “diversity”
 • Complementary skills
 • Different ways of looking at the world
 • When people ask me “how can we create a culture that lets women and minorities thrive” I say...
 • Wrong question! “How do we create a culture that lets everyone thrive?”
 • Try to get students to understand that their “superpower” can be seeing things differently, or having different skills
An Observation, continued

• In science/math classes, I always knew I’d be the best student
• I wasn’t even happy about it
• My fantasy...
• But then, my first computer class
 • A teacher noticed a nearby college had a programming class
 • The timing worked out, where she could drive a few of us there after school
 • And then I walked in...
Observations

• Learning requires self-confidence
• Meeting my daughter’s 5th grade teacher
• My perception of phys ed class
 • But physical fitness is important, and actually fun (I learned way after school)
• I wonder how many kids get turned off to STEM because of being convinced they “aren’t good at it” or that “it’s hard”
Awareness of “Imposter Syndrome”

- My perception in grad school the first time
- I stumbled into the ideal job at the ideal time in history (designing how computer networks should move data, at the dawn of networks)
- I returned to grad school 10 years later
- I had learned “secrets”
 - When the professor is droning on, ask questions!
 - Start on problem sets as soon as you get them
 - If you’ve been doing the homework, you’ll do fine on the tests
Encouraging Questions

• A great example of the opposite

• How to answer “naïve questions”
 • And sometimes these questions make you rethink assumptions and bring clarity to your thinking
 • If you can’t explain it, you probably don’t understand it

• Even more important ... be a role model
Teaching Creativity

• Open-ended projects to get students used to not “having a box” to think within
 • I’ve learned, in Q&A after talks, to answer what I wish they’d asked
• Start with “the obvious right answer might be…but let’s see if we can be more creative”
• Great example: Using a barometer to determine the height of a building
• Also, start with collecting life annoyances...that’s a great opportunity for innovative solutions
Not everything you read is true

• How can you teach this?
• Maybe have the class read things (e.g., on the Internet), and discuss ways of deciding what’s plausible, and how to fact check
• Rather terrifying these days...
• For college students...I recommend to professors
 • Don’t just have your students read what you consider to be good papers
 • Have them read horrible papers in prestigious venues
 • And ground-breaking papers along with the reviews from the first n times the paper was rejected
Communication, and Clear Thinking

- Advice for being a good speaker:
 - Given a topic (you know about)
 - An amount of time
 - A level of the audience
 - Come up with an appropriate talk
 - This also causes the speaker to understand the topic better

- Buzzwords
 - Intimidate most people
 - There are those that are confident they know what it means, but they disagree about it

- Summarizing a book

- When attacking a problem...get rid of all the irrelevant details, and get to the conceptual heart of the problem being solved
 - Challenge: explain the problem to someone outside your field?
Summary

• “Intelligence” isn’t a linear scale

• Steps in problem solving
 • Finding the conceptual heart
 • Being able to explain it to others
 • Understanding similar things that have been done before, and problems with these approaches
 • Seek out people who disagree, and listen to them

• Teach how to summarize things clearly
Thank you!
STEM Webpage www.ed.gov/STEM

STEM Newsletter www.ed.gov/subscriptions

ED Grants https://www2.ed.gov/fund/grants-apply.html

Back to School Success Stories https://oese.ed.gov/

Next STEM Webinar: STEM Strategic Plan Update Nov.17, 2020, 1:30-3:00 PM ET
Invention Education Pathways

Supporting Young Inventors:
Different Ages and Stages of Development

Dr. Stephanie Couch, Executive Director, Lemelson-MIT Program
Massachusetts Institute of Technology, Cambridge, MA

Dr. Kristin Moon, Program Administrator, Technology and Engineering,
Portland Public Schools, Portland, Oregon
Dr. Kristin Moon

Program Administrator, Technology and Engineering, Portland, Public Schools, OR
Dr. Stephanie Couch

Executive Director, Lemelson-MIT
Definitions of Invention Education

Researchers' Definition

Facilitation of educational engagement in which people find and define problems and design and build new, novel, useful, and unique solutions that contribute to the betterment of society

Practitioners' Definition

A pedagogical approach focused on problem identification through empathy and collaborative problem solving that results in novel solutions by integrating the process of invention into teaching and learning

Framework available at: https://inventioneducation.org
Common Elements of Diverse IvE Programs

- A problem-finding or defining stage
- Open-ended inquiry to solve real-world problems
- Teamwork and collaboration within and beyond the team
- Mentors and others from the larger community
- Iterative and recursive learning and design cycles
- Embracing learning from failure and uncertainty
- Educators as guides, mentors, or coaches who learn alongside students
Pathways for Federal STEM Goals and IvE

- Develop and Enrich Strategic Partnerships
 - Foster STEM Ecosystems that Unite Communities
 - Increase Work-Based Learning and Training through Educator-Employer Partnerships
 - Blend Successful Practices from Across the Learning Landscape

- Engage Students where Disciplines Converge
 - Advance Innovation and Entrepreneurship Education
 - Make Mathematics a Magnet
 - Encourage Transdisciplinary Learning

- Build Computational Literacy
 - Promote Digital Literacy and Cyber Safety
 - Make Computational Thinking an Integral Element of All Education
 - Expand Digital Platforms for Teaching and Learning

Biogen-MIT Biotech in Action
STEM+ Meets Invention (Summer Virtual Lab)

Students from MA & NC
• 400 High School Students Engaged as Transdisciplinary Researchers and Inventors
• 75% research posters addressing 13 neurological diseases (including Huntington’s and Alzheimer’s)
• 25% posters with inventions (including ALS)

Speakers and Topics
• Dr. Peter Bergethon
 VP of Quantitative Medicine, Biogen
 – Science, Technology, Mathematics, Physics, Data Science, Disease Modeling, Social and Behavioral Sciences
• Professor Michael Cima
 MIT’s Koch Institute for Integrative Cancer Research (Prolific Inventor)
 – Materials Science, Chemistry, Engineering Devices for Data Capture and Drug Delivery
Computer Science and Computational Thinking

• Technological invention produces a wide range of outputs, including machines, devices, materials, processes, algorithms, and databases

• Students’ InvenTeam projects increasingly involve some form of computing technologies

• In 2019, 14 of 15 InvenTeams’ working prototypes were projects that included CS/CT components
COMMUNITY SUPPORT KEY TO YOUNG INVENTORS’ SUCCESS

SOAR High School InvenTeam helps improve safety and accomplishes something that few teens do – receive a U.S. Patent.

Foster STEM Ecosystems that Unite Communities
Post-Secondary Programs Producing LMIT Student Prize Winners

Johns Hopkins University
BME Undergraduate Design Team Program

MIT
Global Engineering and Research (GEAR) Lab

Brigham Young University
Rollins Center for Entrepreneurship and Technology

Ithemba
2019 “Cure it!” Undergraduate Team Student Prize Winner
A reusable, low-cost, contamination-free breast biopsy device

Natasha Wright
2017 “Eat it!” Graduate Student Prize Winner
Solar-Powered Desalination System for Off-Grid Water Production in India and Gaza; and Usage Sensor for Household Water Treatment Devices

Neptune Plastics, Inc.
2020 “Use it!” Undergraduate Team Student Prize Winner
Single-use, biodegradable and compostable plastic film
Empathy and Introduction to Inventing through Literature

Grades K-3
- Abby Invents
- Literacy component of Full STEAM Ahead* (March 2020) for youngest inventors
- Graphic novel
- Problem identification & solving
- Invention cycle
- Patent activity

Grades 4-8
- Stepping into Coding and Inventing Through Literature
- Introducing inventing via Ideas4ears competition
- Literacy component: El Deafo
 - Autobiographical
 - Graphic novel
 - Empathy building

https://fullsteam.mit.edu/week-2-package-stepping-into-invention/
Students’ Developmental Trajectory

• Useful – Beginner
• Unique – Intermediate
• Reduce to practice – Proficient
• Not obvious to one skilled in the art - Advanced

For more information, read the report by the Committee for the Study of Invention
https://lemelson.mit.edu/node/2522
Teachers’ Reasons for Engaging in Invention Education

• Connecting students to real world experiences
• Opportunities to help students integrate and apply knowledge
• Excitement
• Connecting with community
• Interest in problem solving of real-world challenges
• Equity and social justice
• Process of learning
Knowledge and Experiences Needed by Teachers

• Open-ended, problem-based inquiry
• Scaffolding instruction
• Utilizing knowledge, people, and resources across disciplines and industries
• Integrating student backgrounds and home funds of knowledge
• Developing and using various formative and summative assessments
• Information and inquiry literacies
• Collaborating with others beyond school
Challenges in Facilitating Invention Education

• Time in the school day
• Assessments and accountability not geared towards the transdisciplinary nature of IvE
• Teachers are often trained to know, teach, and transmit knowledge in a singular discipline rather than making the connections and learning alongside students working in teams.
• Physical and environmental aspects of IvE, including space, physical and human resources, tools, and the technical and applied knowledge
All Grades: In- or Out-of-School
Invention Conventions alongside Science & Engineering Fairs
Invention Education & the Federal STEM Plan

Aligns with federal STEM goals:

– Builds strong foundations for STEM literacy
– Prepares the STEM workforce for the future
– Increases diversity, equity and inclusion in STEM
Invention Education
Preparing Students for a Future Yet To Be Invented

David Coronado
The Lemelson Foundation

Joyce Ward
U.S. Patent and Trademark Office
David Coronado
Program Officer, The Lemelson Foundation
Joyce Ward
Director, Office of Education,
U.S. Patent & Trademark Office
Agency Overview

Importance of Invention Education to work of USPTO - Partnerships

5-Year Plan "Advance Innovation and Entrepreneurship"
SUCCESS Act – National Council for Expanding American Innovation

Study of Underrepresented Classes Chasing Engineering and Science Success (SUCCESS) Act of 2018

America’s long-standing economic prosperity and global technological leadership depend on a strong and vibrant innovation ecosystem. To maximize the nation's potential, it is critically important that all Americans have the opportunity to innovate, seek patent protection for their inventions, start new companies, succeed in established companies, and achieve the American dream.

The Study of Underrepresented Classes Chasing Engineering and Science Success (SUCCESS) Act of 2018 directed the Under Secretary of Commerce for Intellectual Property and Director of the U.S. Patent and Trademark Office (USPTO), in consultation with the administrator of the Small Business Administration (SBA), to prepare a report that:

- Identifies publicly available data on the number of patents annually applied for and obtained by women, minorities, and veterans
- Identifies publicly available data on the benefits of increasing the number of patents applied for and obtained by women, minorities, and veterans and the small businesses owned by them
- Provides legislative recommendations for how to promote the participation of women, minorities, and veterans in entrepreneurship activities and increase the number of women, minorities, and veterans who apply for and obtain patents.

"To maintain our technological edge, the United States must seek to broaden our innovation ecosystem demographically, geographically, and economically."

— USPTO Director Andrei Iancu
Growing an InventEd Network

- A diverse group of leaders from education, government, policy and more

- Committed to increasing access to quality Invention Education to more students across the country
What We Need to Solve For

- **Complex Challenges** – US and Global Health, Climate Change, Sustainable Business, Inequality, etc. (Source: UN)

- **Rapidly Changing Technologies** – New technologies are changing the workplace at an unprecedented rate (Source: Deloitte)

- **Talent Shortages** - In information technology, engineering, technicians, and others required for 21st Century jobs (Source: ManpowerGroup)

- **Lack of Diversity** - Patent holders and leading technology innovators are 90% male and nearly 95% Asian or White (Source: Nager et al., 2016)
What is Needed
A Diverse Pipeline of Future Inventors and Problem-Solvers

- Agile Thinkers
- New Ideas and Solutions
- Inclusive Problem Solving
- Technical Talent
- Empathetic Leaders
Invention Education

- Opens Minds and Possibilities
- Enhances Learning
- Prepares Students for the Economy of the Future

By teaching today’s youth how to be inventive thinkers, we can prepare them to succeed in an everchanging world.

We can create a better future for us all.
So how do we prepare students today for an unpredictable future?

Invention Education Resources
Our children face a future of new, more demanding, and increasingly complex problems.

Solving these problems will require agile thinkers with diverse perspectives and life experiences, and an ability to identify and acquire the new, yet unknown knowledge needed to operate and create tomorrow’s technologies and industries. At the same time, our educational system risks growing increasingly out of step with the needs of life and work in the 21st century. Invention Education offers a powerful approach to bridge this gap.

Learn more about how Invention Education supports:

Students Educators Society
Invention Education Framework

- A guide for adoption and assessment of Invention Education program quality

- Released in March 2020 and developed in collaboration with more than 100 organizations
Invention Education Research

- Consolidates current knowledge base for those advancing the field of Invention Education

 - Released at InventEd 2019, builds on work published in April 2019 issue of Technology & Innovation Journal
Curricula

Select a grade level and/or enter a topic and click the Find Curricula button to discover Invention Education curricula.

76 results found

Oregon State University

The Oregon State University (OSU) Office of Precollege Programs provides programs designed to increase opportunities for Oregon's youth. Their website contains useful information that could be useful to teachers and students nationwide.

Michelson Institute for IP

Grades 9–12

The Michelson Institute for IP presents Intellectual Property resources that are accessible to learners. There is an engaging series of resources for the layperson in the Intangible Advantage IP book and video series.
Lesson plan: How inventions are saving sea turtles

Sea turtles are amongst the world’s most endangered species. Prized for their eggs, meat and shells, poachers and human encroachment destroy more than 90 percent of sea turtle nests each year across Central America.
Curricula

Search Curricula

Select a grade level and/or enter a topic and click the Find Curricula button to discover Invention Education curricula.

76 results found

Oregon State University

The Oregon State University (OSU) Office of Precollege Programs provides programs designed to increase the number of Oregon's youth. Their website contains useful information that could be useful to teachers and students nationwide.

Michelson Institute for IP

Grades 9–12

The Michelson Institute for IP presents Intellectual Property resources that are accessible to learners. There is an engaging series of resources for the layperson in the Intangible Advantage IP book and video series.
Educator Resources & Professional Development Opportunities

USPTO Kids Pages

National Summer Teacher Institute (NSTI) on Innovation, STEM and Intellectual Property
www.uspto.gov/teacherinstitute
Monthly Offerings for K-12 Educators

- "Last Tuesday" Webinars

Monthly virtual professional development workshops for K-12 educators interested in integrating intellectual property (IP), invention, and innovation content into STEM/STEAM classrooms. Explore different types of IP protection including patents, trademarks, copyright, and trade secrets. Sessions are held the last Tuesday of each month from 6:00pm-7:30pm ET. Visit the USPTO Events page to register or email us as education@uspto.gov.

- Wednesday Office Hours

Monthly virtual “Office Hours” for K-12 educators and learners provide an informal opportunity to ask intellectual property related questions and allow deeper exploration of ideas to integrate intellectual property and invention education concepts into various subject matter. Office hours are held on the last Wednesday of each month from 3:00pm to 4:00pm ET.
USPTO Inventor Collectible Card Series

www.uspto.gov/kids
Education@uspto.gov
USPTO Resources & Regional Offices

- Patent and Trademark Resource Centers (PTRC)

Nationwide network of public, state, and academic libraries designated by the USPTO to disseminate patent and trademark information and support the intellectual property needs of the public.
February 3 - 4, 2021

INVENTING AN EQUITABLE FUTURE

Virtual Convening

inventioneducation.org
Join Us.
Together we can bring the promise of Invention Education to all students

Actions to Take Now:
• Learn more at inventioneducation.org
• Join our mailing list
• Download the free Invention Education Framework
• Download free Invention Education Curricula